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CAD-Oriented General Circuit Description of

Uniform Coupled Lossy Dispersive

Waveguide Structures
Tom Dhaene and Daniel De Zutter

Abstract—A general full-wave circuit description of uniform

coupled lossy dispersive waveguide structures is presented.

Starting from Maxwell’s equations, the generalized coupled te-

Iegrapher’s equations are directly found and the frequency de-

pendent line parameter matrices R(to), G(to), L(to) and C(to)

are defined in an unambiguous way. A new symmetric high-
frequency characteristic impedance matrix ZC(0) is introduced

which is much more suited for circuit simulation purposes than

the traditional line-mode impedances. The reciprocity relation

is explicitly taken into account. The complete power distribu-
tion over the different modes and different lines are calculated
in a rigorous and concise way. The major advantage of this
high-frequency model is its simple circuit-interpretation and its
compatibility with the well-known quasi-static circuit models.

The matrix formalism is used throughout this paper. This

guarantees a compact, easily implementable and very general

description which is well suited for CAD applications.

I. INTRODUCTION

I N RECENT years, several authors have described loss-

less and/or lossy uniform waveguide structures. Origi-

nally, the frequency dependence of the modal parameters

was neglected and modeling was based on a quasi-TEM

approximation [1]–[5]. However with increasing signal

frequencies, the hybrid nature of the interconnections be-

comes more and more important [6]. A large number of

publications deals with the calculation of the hybrid-mode

characteristics (p. e., [7]-[8]). A frequency dependent cir-

cuit model is required if the dispersive nature of such an

interconnection structure has to be taken into account.

The uncoupled hybrid waveguide structure is exten-

sively described in the literature, see e.g., [9]–[10]. Fewer

authors described the more general coupled structures. For

such structures Jansen [11] introduced a quite often used

line-mode characteristic impedance based on an approxi-

mative partial power definition. The proposed power dis-

tribution is only exact in the quasi-static limit and reduces

to the one proposed in [12]. Later on Wiemer and Jansen

[13] proposed a modified reciprocity-related line-mode

characteristic impedance definition for lossless multicon-
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ductor hybrid-mode transmission lines. The work of Tri-

pathi and Lee [14] and Carin and Webb [15] is also re-

stricted to 10SS1CSSstructures. Fach6 and De Zutter [16]

introduced a correct partial power definition for a lossless

two-conductor structure. However, the extension to lossy

and to multiconductor waveguide structures is rather

sketchy and incomplete.

In this study the matrix formalism is used. This guar-

antees a very compact, easy implementable and general

description. Some results of previous studies can be seen

as a special case (quasi-static approximation, single line,
lossless case) of this new universal approach. Based on

Maxwell’s equations, an accurate coupled transmission

line model is proposed for the fundamental modes of a

uniform coupled dispersive lossy waveguide structure.

This general high-frequency circuit model together with

other linear and/or nonlinear device models can be used

for transient simulation [17] and for CAD applications.

First, the relations betw~en the different propagating

modes are examined and the transformation between

modal parameters and circuit parameters is defined in an

unambiguous way based on the power-current (PI-) for-

mulation [18] for typical multilayer structures such as

striplines and microstrips or on the power-voltage (PV-)

formulation for coplanar structures. Then, the general fre-

quency dependent telegrapher’s equations proceed di-

,rectly from Maxwell’s equations. No quasi-static assump-

tions or extrapolations are required. The dispersive

waveguide structure is completely characterized by the

frequency dependent symmetric line parameter matrices

R(u), G(w), ~(co) and C(u) or by the characteristic imped-

ance matrix Z.(u) and the complex propagating factor

matrix A.(Q)). The frequency dependent characteristic

impedance matrix Z.(o) is proven to be symmetric due to

reciprocity. This high-frequency characteristic impedance

definition is much more suited for circuit simulation pur-

poses than the traditional line-mode impedances [11]-[16]

and it corresponds with the well-known static circuit char-

acteristic impedance matrix [1] in the low frequency limit.

Furthermore, the electromagnetic (normalized) fields as-

sociated witlh each mode and each conductor are defined.
The power distribution ovcx the different modes and dif-

ferent lines is calculated in a rigorous and concise way.

Finally, an example illustrates this general circuit-ori-

ented modeling approach.
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II. MODAL REPRESENTATION OF THE FIELDS IN A

GENERAL WAVEGUIDE STRUCTURE

Consider a general coupled lossy waveguide structure

(see Fig. 1) consisting of N + 1 conductors in a lossless

or lossy inhomogeneous dielectric. Each conductor has an

arbitrary cross-section and is uniform along its length

(longitudinal z direction). The (N + I)’h line is chosen as

the reference or ground conductor.

We focus our attention on the N fundamental modes of

the coupled multiconductor structure. A single transmis-

sion line will correspond with each mode under consid-

eration. It is also possible to extend our approach to

higher-order modes, but we will not consider this problem

here.

In the sequel, the common time dependence exp (jtit)

will be omited and we will use the phasor notation.

The electromagnetic field associated with each hybrid

mode can be divided in a longitudinal and a transversal

component [9]. The global electromagnetic fields consist

of the sum of the partial fields of the N fundamental

modes:

m, y, z) = v.(z)‘IV(X, y) + Rozo(z)‘ET(4 y)

77(X, y, z) = z. (z) ‘Z?(X, y) + + v. (z) ‘ET(X, y)

(lb)

where 1

Vu (Z) = [Vti, (Z)] p x II

EP(.X,y) = [E:(X, Y)] pvx 11. (2)

R. (s 120 @ is the characteristic impedance of free-

space. The transversal (subscript “t”) and longitudinal

(subscript ‘’1”) fields depend only on the transversal

space-coordinates x and y. The dimension of these fields

are m–l. The parameters VOPand I.P (p = 1, - “ - , N)

are the modal voltage and current of the pth m~de and

their dimension is volt and ampere respectively. They de-

pend only upon ‘the longitudinal space-coordinate .z.

Throughout this paper the subindex “v” indicates field

quantities while the subindex “c” is used for circuit

quantities.

Starting from Maxwell’s equations and (1), it is shown

in Appendix A that the modal voltages and currents are

‘The bold faced symbols represent matrices, and the superscript accent

‘“–” is used to denote vectors.

Fig. 1. General uniform waveguide structure with N + 1 conductors.

related by the following transmission line equations:

– : vu(z) = rzoz. (z) (3a)

–: ZJZ) = rz;lvv(z) (3b)

where Zti ( = diag [ZUP] [~. ~1) contains arbitra~ complex

modal impedances and I’ (= diag [TP ] [~. ~1) contains the

complex modal propagation factors. The eigenvalue ma-

trix-equation for these modal propagation factors is given

in Appendix A.

The modal voltage and current vectors are the sum of

wave components propagating in the negative and posi-

tive z-direction:

VU(z) = e ‘rz V: (0) + e +rz v; (0) = v; (z) + v; (z)

(4a)

Iv(z) = e ‘rzZ~ (0) – e +rzz; (0) = z: (z) – Ii (z)

= zjl [e‘r’ VJ (0) – e ‘r’ V: (0)] (4b)

where the unknown constant vectors (at z = O) are deter-

mined by the bounda~ conditions, i.e., by driving and

receiving circuitry.

III. TRANSFORMATION FROM A MODAL DESCRIPTION TO

A CIRCUIT DESCRIPTION

In order to simulate a hybrid structure with a circuit

simulator [17] we have to transform the modal description

into a circuit model consisting of coupled lossy dispersive

transmission lines. For TEM structures, the conductor

voltages and currents can be calculated in an unambigu-

ous way by line-integrals of the electric and magnetic

fields, For non-TEM structures however, there is no such
unique definition of conductor voltage and current. Only

in the quasi-static limit (quasi-TEM), both circuit param-

eters, voltage and current, have a unique and clear circuit

interpretation. We use the well-accepted PI-formulation

to model the structure under study. The circuit current

ZCi(z) (i= 1, “ “ “ , N) is chosen to be identical to the total

longitudinal current flowing along conductor i. This

choice is the same as in the quasi-static case. Further-

more, both the circuit model representation and the real

waveguide structure should have the same complex prop-

agation modal factors YP and should propagate the same

average complex power.
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Thediscussion proceeds in three steps: first the circuit

current is defined followed in a second step by the circuit

voltage. The arbitrariness introduced in the first two steps

is removed by the introduction of the conservation of

power principle in a third step. As discussed in [18] -[19],

the PI-model has the most TEM-like character for mi-

crostrips, striplines and related structures, Note however

that the present study is not restricted to the PI-model!

The discussion given in the sequel proceeds in a com-

pletely analogous way for the PV-formulation as ex-

plained in Appendix B.

A. Circuit Current

As stated above, the circuit current ZCi(z) (i = 1, “ “ o ,

N) is defined as the total longitudinal current flowing

along conductor i:

z.,(z) =
$

E(X> y, z) “ di =
$

z. (z) ‘Ry(x, y) “ di
i i

(5)

withi= l,.”” , N. The current is a clear physical quan-

tity that consists of contributions of the N propagating

modes. The integration extends over the boundaries of the

cross-section of conductor i (see Fig. 2). In the quasi-

static limit the current is uniquely defined and the inte-

gration-path can be chosen arbitrary around the conduc-

tor, because the displacement current is zero.

~Equation (5) can be written in a compact matrix-form

as

1. (z) = MZL (z) (6a)

where L (= [Zci(z)] [.MX 11) is the circuit current vector and

P

MI = [zip] r~xfv= ‘ip =
9

77; “ di; (6b)
i

Ml is the frequency dependent transformation matrix be-

tween modal currents and circuit currents,

Remark that ~$ can be multiplied with an arbitrary

complex factor 6P If ZOPis divided by the same factor. Con-

sequently, the modal-circuit transformation matrix kfl is

NOT uniquely defined. On the other hand, the ratios Zi~/$~

(i, j,p= l,”’”, N) are determined in an unambiguous

way.

B. Circuit Voltage

The circuit voltage vector V. (= [V.i (z)][N X11) is still

unknown. Now we will look for a practical representation

suited for further matrix calculations. Later on, we will

use the power-current (PI-) formulation to define the ,un-

known parameters.
The electromagnetic fields can always be expressed as

a linear combination of the propagating modal fields,

hence, we can represent the circuit voltage vector V,
as a superposition of the modal voltages V., ( p = 1,
. . . , N):

Vc(z) = M. v. (z) (7)

Y,

L+x

z

Fig. 2. Integration path around conductor i.

where MO ( = [~i~ ] [~ XN] ) is the frequency dependent
transformation matrix between modal voltages and circuit

voltages. ~

With the help of (4) and (7), the voltage components

propagating in the positive z-direction can be written as

l’: (z) = M. V; (z) = Moe ‘r’ V: (0)

where Mj (= [V@l[NXNI = [Vipzu,]) is the frequency de-
pendent transformation matrix between modal currents

and circuit voltages. The ratios ~p/& (ij j, p = 1,
. . . N) are uniquely determined. For the negative

z-dire~tion, ML must be replaced by –M;. In the sequel
we will restrict ourselves to results for the + z-direction.

In that case 1: (z) (6) and V:(z) (8) are formed by the

sum of individual contributions of the form
Z@l~ (0) e ‘7PZ and V@Z~(0) e ‘Ypz respectively. They can

be seen as the contribution of the pth mode to the circuit

current and the circuit voltage propagating along the ith

conductor in the positive (longitudinal) z-direction. Only

the first circuit factor has a real physical current meaning.

The second one is defined via power and current (PI).

C. Power Conservation

We will now assign a value to the arbitrary matrices M.
and M: by looking at the propagated power. The circuit

model and the coupled waveguide structure under study

should propagate” the same complex power. The average
complex power propagated by the coupled hybrid wave-
guide structure can be found by integrating Poynting’s

vector over the cross-section S of the structure:

s

o d~ ZV(2)*

= v. (z) ‘PHI. (z)* (9)

where d~ = ~ZdS = i, dx dy, and

EH _. 1
Ppq – 2

s!
[~$(X, y) X ~~(.x, y)*] “ d~ (10)

s

withp, q=l, ”.”, N.



1548 IEEE TRANSACTIONSON MICROWAVETHEORYAND TECHNIQUES,VOL. 40, NO. 7, JULY 1992

The average complex power propagating in the positive

z-direction is

p~t+= v: (())~e ‘r’ PEHe ‘r”zl~ (())*

= z: (z) ‘P’EHZ; (z)* (11)

where

P ‘EH = [P::][N . ~] = zupEH

P:: = p::zu,. (12)

On the other hand, the average complex power propa-
gated by the coupled transmission line model is given by

P’ot = ; Vc(z) ‘Zc (Z)* = ; v. (z) ‘M:MFZ. (Z)* (13)c

and the power propagating in the positive z-direction is

P y+ = ; v: (z) ‘z: (z)* = ; z: (z) ‘M:TM7Z; (z)*

(14)

From the right-hand side of (14) it follows the P~+ is
constituted by elementary contributions of the form

l; (0)e ‘7pzP~~e ‘y ~zZ~ (0)* due to the electric field of

mode p and the magnetic field of mode q( p, q = 1,
. . . , N).

The average complex power propagated by the coupled

hybrid waveguide structure and by the circuit model must

be identical, hence P m = p~ = p~. This requires that

; M:M: = PEH (15a)

or that

; M;TM~ = P IHf (15b)

The equivalence of propagating power (15) defines the

unknown matrices Mu and M;,

IV. COUPLED TRANSMISSION LINE MODEL

In this part our final transmission line model is intro-

duced (Section IV-A). The generalized line parameter

matrices R(a), G(cJ), L(cJ) and C(a) are defined. In Sec-

tion IV-B it is shown how these matrices can be directly

derived from the modal fields. Subsequent Sections (IV-D

to IV-F) discuss the properties of our circuit model which

can be seen as an extension of the more familiar quasi-

TEM approximation. To this end so-called standard trans-

formation matrices are introduced in Section IV-C, Fi-
nally the well-known quasi-static lossless ‘ ‘Chang’ ‘-cir-

cuit model [20] is extended to cover coupled lossy

dispersive structures (Section IV-G).

A. Generalized Telegrapher’s Equations

The generalized telegrapher’s equations can be found

by substitution of the circuit currents (6) and the circuit

voltages (7) into the modal transmission line equations

(3):

– ~ Vc (z) = Mti rZVM1- 11. (Z) = Zc,rZc(Z) (16a)

– : Zc(z) = MzI’Z;l M;l v.(z) = y.,, v.(z) (16b)

Combining these two equations leads to the wave equa-

tions for the circuit currents and voltages:

$ V.(z) = MflI’2M;1Vc(z) = A: Vc(z) (17a)

-$Zc(z) = MII’2M;1Zc(z) = A; ZC(Z) = A: TZ.(Z)

(17b)

These (frequency dependent !) equations are very similar

to the well-known static transmission line equations [1],

[5]. Note however that no static extrapolations or as-

sumptions were made.

The matrices A.(u) = MVI’M;l and AI(0) =

MII’Mjl represent the complex voltage and current prop-

agation matrix respectively. These matrices are uniquely

defined. Note however that they are not symmetric.

B. Generalized Transmission Line Parameters

The matrices ZCi~(u) and Y.,,(o) are uniquely defined

and they represent the circuit impedance and the admit-

tance line matrices per unit length. Generally spoken,

these matrices are frequency dependent, and we can split

them in a real and an imaginary part:

ZCir(ti) = R(a) + jtiL(u) = A. (o) ZC(w) (18a)

YCir(ti) = G(u) + juC(U) = A1(ti) YC(u) (18b)

where R(u), G(m), L(oJ) and C(u) -are the generalized re-

sistance, capacitance, conductance and inductance [N x

N]-matrices. The coupled transmission line model is

completely characterized by N(N + 1) complex frequency

dependent line parameter.

The new circuit model is fully compatible with, and is

an extension towards higher frequencies of the well-

known TEM and quasi-TEM circuit models [1]. Some

typical static concepts, such as capacitance and induct-

ance, are generalized and introduced in the high-fre-

quency model. Note that at each discrete frequency the

model can be seen as a quasi-static model. The resem-

blance with the quasi-static model is the main reason why

the proposed frequency dependent model is perfectly
suited for CAD calculations.

The line parameter matrices Z?(C.J),G(w), L(u) and C(u),

and also Z.,, (u) and YCir(CJ), are symmetric because the

coupled waveguide structures are reciprocal (at least in

the absence of anisotropic media). Taking relation (16)

into account, the symmetry of ZC1,and YCil leads to the

following important reciprocity relation:

MfMj = diag (b$) (19)

The diagonal matrix diag (bj )lN, ~1 depends on power

and current. Combining (15b) and (19) leads to

2P’EH = diag (bj)M~l Mf (20)
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In the lossless case the transformation matrix MI can

always be chosen to be real. In that case (20) reduces to

2P’EH = diag (bj) (21)

The power matrix P ‘EH is diagonal in the losslesk case,

which means that the different propagating modes do not

interchange any power: the modes are power-orthogonal.

This can also be shown starting from Lorentz reciprocity

relation. The diagonal elements of P ‘EH give an indica-

tion of the average propagated power by the different

modes.

It is very important to emphase that only in the lossless

case the reciprocity relation (19) is included in the power

relation (15) ! This means that the reciprocity property is

not included in the circuit model for lossy waveguide

structures proposed in [16].

C. Standard Transformation Matrices

As mentioned earlier, the transformation matrices Mz
and M; are not uniquely defined. If the partial modal field

~~ is multiplied with a arbitrary complex factor 6P, the

factors liP and P’iPare also multiplied with the same factor.

Based on the reciprocity relation (19), we introduce two

new standard transformation matrices:

j@2i.d.Id
= Ml diag (bjl ) (22a)

M;hnd’rd = M: diag (bj] ) (22b)

(19) then leads to the useful relation:

[M;andad]T = [M;jnda’d] “ . (23)

D. Characteristic Impedance Matrix

The frequency dependent characteristic impedance ma-

trix Zc (co) is defined as

Zc = A j 12Cir = ML M; 1 = M~@ndard[Mjtandad ] ‘ 1. (24)

This [N x N]-matrix can be seen as the input impedance

matrix of an infinitely long coupled transmission line

structure. The characteristic impedance matrix relates the

current waves to the voltage waves traveling in positive

longitudinal direction:

v; (z) = Zcz; (z) (25)

Combining (15) and (24) leads to a familiar-looking power

relation:

P ‘EH = ; M; ZcMj” = ; M;TM; (26)

In the lossless case Mz can always be chosen to be real.

As Ml is real, (23) and (24) establish that the matrix Zc is

real, symmetric and has positive diagonal elements. Fur-

thermore, having the form A ‘A, with A a real [N X lV]-

matrix, the characteristic impedance matrix is also posi-

tive definite [1].

The characte&tic admittance matrix Y.(u) is defined

in an analogous way:

YC = A~l YCif = MIM~-’ = Z~l (27)

This matrix is also symmetric. Both the characteristic

impedance and admittance matrix do not depend upon the

longitudinal space coordinate z and they are defined in an

unambiguous way.

In the quasi-static limit, the new high-frequency char-

acteristic impedance definition corresponds with the well-

known (static) characteristic impedance matrix [1], [5]. It

is much more suited for circuit simulation, and CAD ap-

plications than the traditionally used line-mode imped-

ances [11 ]–[ 16]. The line-mode characteristic impedance

Z;P of a conductor i for an eigenmode p is defined as the

ratio of the circuit voltage Vi~ to the circuit current ZjP

propagating in the z-direction along transmission line i,
for mode p, thus:

Zti=:=;z”p. (28)
1P {e

The relation between the characteristic impedance matrix

2.(o) and the line-mode characteristic impedance Zip is

clearly expressed by (24):

[%,] [~xivl [$PlpVXNI = [vipl[Nx N] = [zip ~@l[NXN1.
(29)

In the Iossless case, the line-mode characteristic imped-

ance Zip can be negative, as was shown theoretically along

with some numerical examples in [15].

E. Wave Representation

The circuit voltage and current vectors are the sum of

wave components propagating in negative and positive z-

direction:

Z.(z) ❑= M1(e ‘rz ZJ (0) – e ‘rz z; (0))

e –4z1; (()) – e,= +i,z~; (0) (30a)

and

V.(z) = Mj(e ‘rzl~ (0) + e ‘rzIj (o))

‘- Zc(e ‘A’ZZJ (0) + e ‘*’zZ; (0))— (30b)

where the unknown line vectors are determined by the

boundary conditions.

F. Eigenvectors

Based on the generalized telegrapher’s equations (16),

it can be seen that the columns of the transformation mat-

rices M. and MI respectively consist of the eig-envectors

of the complex propagation-rn-afix Au (o) and A1(OJ). The

eigenvalue equations are found to be:

(Zcir ‘cir) ‘&l = ‘Y; ‘gel (31)

and

Z~J (Z~i~Y~i~) = T; ‘G (32)

V<oland Z~.1 are the right-hand and left-hand eigenvectors
of AW, associated with the same eigenvalue -yP.

Both sets of eigenvectors V{Ol and Z~O1(p = 1, “ “ o ,

iV) span the complete N-dimensional space. Hence any
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lJO) v.(o) V.(d) It(d)
I

M, V,(O) z, r @ I=(d)

!iilP-

M, v,(d) ,

— ..

Fig, 3. Equivalent circuit model.

arbitrary voltage or current distribution can be repre-

sented as a weighted sum of these eigenvectors (see for

example (6) and (7)).

The reciprocity relation (19) shows that the eigenvec-

tors V&l and 1~01are orthogonal, i.e. V~~ “ Z&l = O for p
# q. This can also be proven by combining (31) and (32)

in a proper way [1]. The standard eigencurrent and eigen-

voltage vectors (22) are always orthonormal.

G. High$-equency Circuit Model for Coupled Lossy
Dispersive Waveguides

In this part, we will generalize the quasi-static circuit

representation for Iossless transmmslon hnes proposed “by

Chang [20], and construct a high-frequency circuit model

for coupled lossy dispersive waveguides.

The transformation matrices 111 (6) and Mu (7) relate

respectively the circuit to the modal currents (ZC and Zv )

and the circuit to the modal voltages (Vc and Vu). We use

these transformation matrices to decouple the transmis-

sion lines. In that way, the propagation of the N funda-

mental modes is represented by N single decoupled lines.

The characteristic impedance of these lines depends upon

the choice of the transformation matrices Ml and Mu. If

we use the standard transformation matrices defined

above, the characteristic impedance of the uncoupled lines

is 1 Q.

The equivalent (frequency domain) circuit representa-

tion of the general waveguide structure is shown in Fig.

3. Note that the multiplications in the frequency domain

correspond with convolutions in the time domain! The

general waveguide structure with N fundamental propa-

gating modes, is completely characterized by N(N + 1)

complex frequency dependent parameters. These param-

eters can be the N2 line-mode characteristic impedances

Zip (28) and the N modal propagation factors 7P (3) which

follow directly from the full-wave analysis. The N(N +

1)/2 relevant parameters of the symmetric circuit imped-

ance matrix Zcir (18a) and the circuit admittance matrix

YCir (18b) are more suited for CAD-applications.

A lossless hybrid waveguide structure consisting of two

signal conductors and one reference conductor (N = 2)

for example is completely characterized by 3 frequency

dependent generalized inductance (Ll,, &z, L~ = Lzl =
LIZ ) and 3 generalized capacitance (C1,, C’zz, Cm = C21

= Clz ) parameters. Remark the analogy with the (fre-

quency independent) quasi-TEM description.

V. POWER DISTRIBUTION OVER THE DIFFERENT LINES

In this section a detailed study is presented of the con-

tribution of each mode to the power propagated by each

line. The problem is complicated by the fact that the

modes are no longer power orthogonal as is the case for

Iossless structures.

In (1), the global electromagnetic fields were repre-

sented as a sum of partial modal fields. This led to the

power distribution over the different modes (P~~). Now

we will examine the power distribution over the different

lines. Using (6) and (7), the global electromagnetic fields

can be expressed as a function of circuit-related parame-

ters:

Z(X, y, z) ❑= VC(Z)TE:(X, y) + R~zc(z) ~Ef(x, y)

(33a)

E(X> y, z) ‘= Z.(z) w(. x,y) + + Vc(zm;(x, y)

(33b)

where

E;(x, y) = M;-’–MEt (X, y) ~f(X, y) = M:-’ ~~(X, y)

With each conductor corresponds an unique transversal

and longitudinal normalized electric and magnetic field.

Equation (34) shows that these normalized fields can be

seen as a weighted average of the different propagating

modal fields. In what follows, we only consider the waves

propagating in positive z-direction.

Based on (14) and (33), we can prove that the partial

transversal electromagnetic fields ~~ (x, y) and ~~ (x, y),

associated with the conductors i and j, are power-ortho-

normal, i.e.:

!!
[E; (x, y) X ~:(X, y)*T] - d~ = Idiag (35)

s

The circuit-related electromagnetic fields (34) are always

power-orthonormal. On the other hand, the mode-related

electromagnetic fields (2) are orily power-orthogonal in

the lossless case.

The current flowing along conductor i (5) can be ex-

pressed as a function of the transversal partial magnetic

field:

%,(z) =
+

Zc(z)%l; (x, y) - di (36)
i

where the integration extends over the boundary of the

cross-section of conductor i (see Fig. 2). This leads to:

!ii

H;(X, y) “ di = 8V (37)

where 6ti is the IKronecker delta. Note that the total elec-

tric and magnetic fields consist of longitudinal and trans-

versal components, thus IZ x ~~ # O.

The normalized field ~~ (x, y) is a weighted average of

the propagating modal transversal magnetic fields (34).



DHAENE AND DE ZUTTER: CIRCUIT DESCRIPTION OF LOSSY DISPERSIVE WAVEGUIDE STRUCTURES 1551

This field is responsible fora current of 1 A along con-

ductor i, and for a current of O A along the other lines in

the circuit model (37). The current of O A should be in-

terpreted in the average sense, this means that some lon-

gitudinal currents may flow along conductor j (# i), but

the net longitudinal current (= weighted sum of different

modal currents) is identically zero.

Taking into account the power-orthogonality relation

(35), we see that ~~ (x, y) is responsible for a voltage of

1 V on conductor i and a voltage of O V on the other

conductors of the circuit model.

We can conclude that the circuit-related tiellds are nor-

malized in the average sense defined above.

Now we will split the electromagnetic fields associated

with a conductor in smaller parts, each part associated

with a different mode. We only consider the transversal

fields. The calculations of the longitudinal fields proceeds

in an analogous way. We define:

i7y’+ (x, y) = E;-@(x, y)il!f: (38a)

~:M+ (.x, y) = H,–’-di’g(x, y)ill~ (38b)

where

E:-diag(x, y) = dkig [~i(x, Y)lI~X M

and

Il”dag(x, y) = diag [~~(x, y)][~~ ~l.

~$M+ (x, Y) (Ht,PCM+ (x, y)) is the transversal electric (mag-
netic) field associated with the pth mode and the ith con-

ductor. From (37) and (38) we learn that

6iIiP =
$

R;M+ (x, y) “ di (39)
L

where lip is defined in (6).

Substituting (38) in (35) leads to a new power distri-

bution relation:

(40)

where Z1$(0)e ‘TpzP~ e –Y;ZZ;4 @)* is the average COm-

plex power propagating in positive z-direction along con-

ductor i and associated with the magnetic field of mode q

and the electric field of mode p.
Based on the power orthonormality relation of the par-

tial fields ~~ (x, y) and ~c (x, y) (38) and from (34), the~v[+ti
partial power factor PiPq (40) can be expressed as

=1
7 H[E:’+ x R:*] “ m. (41)

s

In the lossless case and if p = ~, this formula is similar

to the approximate partial power expression proposed by

Jansen [11] for coupled hybrid waveguides. Jansen’s for-

mulation was inspired by the (correct) power distribution

for TEM-waveguides [12] and is only exact in the quasi-

static limit. The partial magnetic field associated with

conductor i and mode p used by Jansen ensures that NO

longitudinal current will flow along conductor j ( # i). On

the other hand, the partial magnetic field ~&M+* (38) used

in this paper only ensures that the WEIGHTED SUM of

the modal longitudinal currents flowing along conductor

(# i) is equal to zero (39). Hence, some modal longitu-

dinal current-movement is allowed.

The definition of Jansen can only be used in the quasi-

TEM limit, when the longitudinal electromagnetic fields

are negligibly small. Our definition is appropriate above

the quasi-TEM limit.

Based on (10),, we write
N N

(42)

where P~~ is !proportional to the av”erage complex power

propagating in positive z-direction and associated with the

magnetic field of mode g and the electric field of mode p
(withp, q = 1, “ “ “ ,N).

The total average power propagating in the positive z-

direction (14) is given by
NNN

= z z z:(z) P;:zJ/(z)*
q=lp=l

(43)

In the lossless case, the power orthonormality of the ei-

genmodes ensures that P~~ = O if p # ~. The average

complex power associated with the electromagnetic fields

of the pth mode and propagating in positive z-direction

along the ith conductor of the lossless transmission line

structure is given by 11~ (z)\ 2P $M with P$M = P%+ =

~ Vipl,~.
If the structure is lossless and if N = 2, it can be shown

that (40) and (44) are equivalent to

and

(46)

Note that no static assumptions or extrapolations were

made in the power-analysis derived above. The power

distribution over the different modes’ and different lines is

calculated in a rigorous and concise way.

VI. NUMERICAL EXANIPLE

In this section, we construct an equivalent high-fre-

quency transmission line model for a coupled two-line

system laying in an inhomogeneous lossy medium. The
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Fig. 4. Cross-section of a Iossy coupled strip configuration.
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Fig. 5. Relevant elements of (a) resistance, (b) inductance, (c) conduc-
tance, and (d) capacitance matrix as a function of frequency.

cross-section of the strip configuration is shown in Fig.

4. The structure consists of a perfectly conducting ground

plane, a lossy dielectric substrate (tg 6 = 0.05, E, = 9.8),

and a half-infinite air top-layer. The strips are infinitely

thin and perfectly conducting. The width of both strips is

1 mm.

Two fundamental modes can propagate in this two-line

system: an even mode and an odd mode. Using a rigorous

full-wave integral equation technique [21], the modal

propagation factors and the line-mode characteristic

impedances are calculated in the frequency range O– 100

GHz. All losses are calculated in an exact way without

making any approximations or perturbations. In Fig. 5,

the elements of the symmetric resistance, inductance,

conductance and capacitance matrices are shown as a

function of frequency. Note the significant frequency

dependence of all these parameters.

As expected, the resistive losses are relatively low, and

the conductance factor G1~ is rather high due to the con-

ductance of the dielectric layer (tg 6 = 0.05). The elec-

tromagnetic fields concentrate more and more in the lossy

dielectric layer as the frequency increases. Hence, L1 ~ in-

creases and Cl, decreases with frequency. The frequency

dependent elements of the characteristic impedance ma-

trix Zc (co) are shown in Fig. 6.

Finally, the equivalent transmission line model of the

two-line structure under study is shown in Fig. 7. The

propagation of the fundamental modes is represented by

two single transmission lines. Both decoupled lines have

a characteristic impedance of 1 Q. This high-frequency

circuit model together with other linear and/or nonlinear

;p[[;F[
0.75

.S3, 80 f [GHz] o 20 40 60 80 f [GHz]

Fig. 6. Elements of characteristic impedance matrix as a function of fre-
quency (Zcl, = Z.,,, ZC,2 = ZC21).

~L–––– –__, -—— ——— _

~

‘ iv’ Vmj
, j=l Ij

I
——— —

I I I

P-rw%?&————. ——————
Fig. 7. Equivalent circuit representation of the coupled structure of Fig.

4.

device models can be used for time-domain simulation

[17] and for CAD applications.

VII. CONCLUSION

Starting from Maxwell’s equations, an accurate cou-

pled transmission line model has been proposed for the

fundamental modes of a uniform coupled dispersive lossy

waveguide structure. The frequency dependent circuit
model is well suited for CAD applications and for imple-

mentation in circuit simulators. The matrix formalinm has

been used throughout this paper, which guarantees a very

clear, compact and general description.

Based on the well-accepted power-current (PI-) for-

mulation for stripline or microstrip like structures or on

the power-voltage (PV-) formulation for coplanar struc-

tures, the transformation between modal parameters and

circuit parameters has been defined in an unambiguous

way. The generalized telegrapher’s equations have been

derived directly from Maxwell’s equations. This was also

the case for the frequency dependent line parameter mat-

rices Z/(u), G(u), l.(u) and C(a), the complex propagat-

ing factor Au (co) and the symmetric characteristic imped-

ance matrix Zc (u). This new characteristic impedance

definition is much more suited for circuit simulation pur-

poses than the traditional line-mode impedances. The ma-

jor advantage of this high-frequency model is its simple

circuit-interpretation and its compatibility with the well-

known quasi-static circuit models. Furthermore, the elec-

tromagnetic fields associated with each mode and each

conductor have been defined. The fields associated with

the conductors are always power-orthonormal. The power

distribution over the different modes and different lines

has been calculated in a rigorous and concise way.
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APPENDIX A

GENERALIZED TRANSMISSION LINE EQUATIONS

In [9], relations are derived between the modal current

and the modal voltage, and between the transversal and

the longitudinal field components of a single transmission

line. In this Appendix we derive analogous relations for

the N fundamental modes of a coupled waveguide struc-

ture.

Our starting point is the total electromagnetic field as

given by (la) and (lb). We substitute these representa-

tions in Maxwell’s equations, and separate the longitudi-

nal and the transverse components. This leads to the modal

transmission line equations (3a) and (3b), but also to the

following vector-relations between the longitudinal and

the transversal partial electromagnetic fields:

v x Ey(x, y) +- ju
p(x, y) —~
—H~(x, y)=o

RO

(Ala)

Tzui, x ET(X, y) – ROV x i!?ff(x, y)

– jcql (x, y)ny(x, y) = o (Alb)

rz;llz x 77Y(X, y) –
v x RF(X, y)

RO

+ jcoe(x, y)i?p(x, y) = o

(A2a)

(A2b)

v “ E(x, y)~~(x, y) – ROe(X, y)rz;liZ

“ @’f(x, y) = o (A3)

/4(x, y) rz 1

V o P(X, y)~~(x, y) – j—
RO ‘z

“ 71ff(x, y) = o. (A4)

The results in [9] can be seen as a special case (N = 1)

of the general equations (Al )-(A4). Elimination of the

longitudinal pa~ial fields in (A1)-(A4) leads to two ei-

genvalue equations with the modal propagation factor ma-

trix r (= dkg (VP )[N x N] ) as eigenvalue and with the
modal transversal fields as eigenvectors. The electric ei-

genvalue equation is found to be

[r2 + ~2&]~~(x, y)

[
=/.Lvx : v x Ey(x, y)

1[
– v : v “ eEy(x, y)

1

(A5)

and the magnetic eigenvalue equation is

[r* + ~2PE]B~(x, y)

[

1
=Evx– v x Ey(x, y)

1[ 1
–v :V”pny(x,y) .

e

(A6)
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Fig. 8. Integration path relevant to the PV-formulation.

APPENDIX B

PV-FORMULATION

Both the circuit model and the real waveguide structure

must have the same complex modal propagation factors

-yP and must propagate the same average complex power.

However, these two fundamental conditions do not define

all circuit parameters in an unique way. The remaining”

degree of freedom in the modeling process can be used to

obtain a quasi-sta~ic equivalence.

l?or slotlines and coplanar interconnection structures,
the power-voltage (PV-) model has the most TEM-like

character [22] and is best suited for circuit simulation.

The voltage is a physical quantity which is conserved

when the structure is connected to lumped elements. The

circuit voltage V.i (i = 1, “ . 0 , N) is defined as a line in-

tegral of the electric field:

Vci = J ‘1E(X, y, Z) o d~ = ~i VV(Z)~~~(X, y) “ di
Li

(Bl)

withi = 1, . .’. , N. The voltage is a clear physical quan-

tity that consists of contributions of the N propagating

modes, The integration extends over a well-defined path

(see Fig, 8). In the quasi-static limit the voltage is

uniquely defined and the integration-path can be chosen

arbitrary.

Equation (B 1) can be written in a compact matrix-form”

as:

v. (z) = M. v. (z) (B2)

where Mu ( = [ ViP][N ~N] ) is the frequency dependent

transformation matrix between modal voltages and circuit

voltages. The ratios Vip/Vjp (i, j, p = 1, “ o ‘ , N) are

defined in an unambiguous way.

We represent the circuit current vector ZC as a super-

position of the modal currents Z.P (p = 1, “ “ o , N):

z. (z) = Mlz. (z) (B3)

where Ml ( = [i~P] [NXN]) is the frequency dependent trans-
formation matrix between modal currents and circuit cur-

rents.

The current components propagating in the positive z:

direction can be written as:

Z; (z) = MIZ; (z) = MIZ;l V; (Z) = M; V; (Z) (B4)

where M; ( = [zip 1[~ X~1 = [i~P/ZoP ]) is the frequency de-
pendent transformation matrix betwen modal voltages and
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circuit currents. The ratios ZiP/ V~P(i, j, p = 1, “ “ o , N)

are uniquely defined.

Once the transformation matrices are defined, the anal-

ysis proceeds in exactly the same way as described for the

PI-model.
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