IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 40, NO. 7, JULY 1992 1545

CAD-Oriented General Circuit Description of
Uniform Coupled Lossy Dispersive
Waveguide Structures

Tom Dhaene and Daniel De Zutter

Abstract—A general full-wave circuit description of uniform
coupled lossy dispersive waveguide structures is presented.
Starting from Maxwell’s equations, the generalized coupled te-
lIegrapher’s equations are directly found and the frequency de-
pendent line parameter matrices R(®w), G(®), L(®w) and C(w)
are defined in an unambiguous way. A new symmetric high-
frequency characteristic impedance matrix Z (o) is introduced
which is much more suited for circuit simulation purposes than
the traditional line-mode impedances. The reciprocity relation
is explicitly taken into account. The complete power distribu-
tion over the different modes and different lines are calculated
in a rigorous and concise way. The major advantage of this
high-frequency model is its simple circuit-interpretation and its
compatibility with the well-known quasi-static circuit models.
The matrix formalism is used throughout this paper. This
guarantees a compact, easily implementable and very general
description which is well suited for CAD applications.

I. INTRODUCTION

N RECENT years, several authors have described loss-
less and/or lossy uniform waveguide structures. Origi-

nally, the frequency dependence of the modal parameters -

was neglected and modeling was based on a quasi-TEM
approximation [1]-[5]. However with increasing signal
frequencies, the hybrid nature of the interconnections be-
comes more and more important [6]. A large number of
publications deals with the calculation of the hybrid-mode
characteristics (p.e., [7]-[8]). A frequency dependent cir-
cuit model is required if the dispersive nature of such an
interconnection structure has to be taken into account.
The uncoupled hybrid waveguide structure is exten-
sively described in the literature, see e.g., [9]-[10]. Fewer
authors described the more general coupled structures. For
such structures Jansen [11] introduced a quite often used
line-mode characteristic impedance based on an approxi-
mative partial power definition. The proposed power dis-
tribution is only exact in the quasi-static limit and reduces
to the one proposed in [12]. Later on Wiemer and Jansen
[13] proposed a modified reciprocity-related line-mode
characteristic impedance definition for lossless multicon-

Manuscript received August 13, 1991; revised January 22, 1991. This
work wae cupported by a grant to T. Dhaene from the IWONL (Instituut
tot Aanmoediging van het Wetenschappelijk Onderzock in de Landbouw
en de Nijverheid) and by the NFWO.

The authors are with the Laboratory of Electromagnetism and Acoustics,
University of Ghent, Sint-Pietersniewstraat 41, 9000 Ghent, Belgium.

IEEE Log Number 9108326.

ductor hybrid-mode transmission lines. The work of Tri-
pathi and Lee [14] and Carin and Webb [15] is also re-
stricted to lossless structures. Faché and De Zutter [16]
introduced a correct partial power definition for a lossless
two-conductor structure. However, the extension to lossy
and to multiconductor waveguide structures is rather
sketchy and incomplete.

In this study the matrix formalism is used. This guar-
antees a very compact, easy implementable and general
description. Some results of previous studies can be seen
as a special case (quasi-static approximation, single line,
lossless case) of this new universal approach. Based on
Maxwell’s equations, an accurate coupled transmission
line model is proposed for the fundamental modes of a
uniform coupled dispersive lossy waveguide structure.
This general high-frequency circuit model together with
other linear and/or nonlinear device models can be used
for transient simulation [17] and for CAD applications.

First, the relations between the different propagating
modes are examined and the transformation between
modal parameters and circuit parameters is defined in an
unambiguous way based on the power-current (PI-) for-
mulation [18] for typical multilayer structures such as
striplines and microstrips or on the power-voltage (PV-)
formulation for coplanar structures. Then, the general fre-
quency dependent telegrapher’s equations proceed di-

rectly from Maxwell’s equations. No quasi-static assump-

tions or extrapolations are required. The dispersive
waveguide structure is completely characterized by the
frequency dependent symmetric line parameter matrices
R(w), G(w), L(w) and C(w) or by the characteristic imped-
ance matrix Z,(w) and the complex propagating factor
matrix A,(w). The frequency dependent characteristic
impedance matrix Z,(w) is proven to be symmetric due to
reciprocity. This high-frequency characteristic impedance
definition is much more suited for circuit simulation pur-
poses than the traditional line-mode impedances [11]-[16]
and it corresponds with the well-known static circuit char-
acteristic impedance matrix [1] in the low frequency limit.
Furthermore, the electromagnetic (normalized) fields as-
sociated with each mode and each conductor are defined.
The power distribution over the different modes and dif-
ferent lines is calculated in a rigorous and concise way.
Finally, an example illustrates this general circuit-ori-
ented modeling approach. '

0018-9480/92%03.00 © 1992 IEEE



1546

II. MopAL REPRESENTATION OF THE FIELDS IN A
GENERAL WAVEGUIDE STRUCTURE

Consider a general coupled lossy waveguide structure

(see Fig. 1) consisting of N + 1 conductors in a lossless
or lossy inhomogeneous dielectric. Each conductor has an
arbitrary cross-section and is uniform along its length
(longitudinal z direction). The (N + 1)™ line is chosen as
the reference or ground conductor.

We focus our attention on the N fundamental modes of
the coupled multiconductor structure. A single transmis-
sion line will correspond with each mode under consid-
eration. It is also possible to extend our approach to
~ higher-order modes, but we will not consider this problem
here. :

In the sequel, the common time dependence exp (jwr)
will be omited and we will use the phasor notation.

The electromagnetic field associated with each hybrid
mode can be divided in a longitudinal and a transversal
component [9]. The global electromagnetic fields consist
of the sum of the partial fields of the N fundamental
modes:

Ex,y,2 = V,@ "EX¥(x,y) + Rol,@ E(x, y)
H, y, ) = L@ H' @, ) + ;;— vV, H'(x, y)
0

(1b)
where'
Vo(@ = Vo, @] oy
L@ = IL,@] nx1]
Efx, y) = [E) (6, )] vxn
EY(x,y) = [E} & Y wx1]
AY(x, ) = [BY G 9 e
HY (e, y) = [HY 06, Dwxny- @

Ry (= 120 Q) is the characteristic impedance of free-
space. The transversal (subscript ‘‘#’’) and longitudinal
(subscript “‘/>’) fields depend only on the transversal
space-coordinates x and y. The dimension of these fields
are m~'. The parameters v, and [, (p = 1, - - - , N)
are the modal voltage and current of the pth mode and
their dimension is volt and ampere respectively. They de-
pend only upon the longitudinal space-coordinate z.
Throughout this paper the subindex ‘‘o’’ indicates field
quantities while the subindex ‘‘c’’ is used for circuit
quantities.

Starting from Maxwell’s equations and (1), it is shown
in Appendix A that the modal voltages and currents are

'The bold faced symbols represent matrices, and the superscript accent
£77 is used to denote vectors. )
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Fig. 1. General uniform waveguide structure with N + 1 conductors.

related by the following transmission line equations:

4y =T2.1L,0) (3a)
dz

- L@ = T2, V,@ (36)
where Z, (= diag [Z,, ]y x n}) contains arbitrary complex
modal impedances and I' (= diag [, ]y x »;) contains the
complex modal propagation factors. The eigenvalue ma-
trix-equation for these modal propagation factors is given
in Appendix A.

The modal voltage and current vectors are the sum of
wave components propagating in the negative and posi-
tive z-direction:

V,2) = e TVIO0) + eV, (0) = V] (@@ + V, (@
(4a)
e I (0) — eI (0) = I @) — I (2)

1,(2)

I

Z;' eV (0) — eV, (0)] (4b)

where the unknown constant vectors (at z = Q) are deter-
mined by the boundary conditions, i.e., by driving and
receiving circuitry.

III. TRANSFORMATION FROM A MODAL DESCRIPTION TO
A CIRcUIT DESCRIPTION

In order to simulate a hybrid structure with a circuit
simulator [17] we have to transform the modal description
into a circuit model consisting of coupled lossy dispersive
transmission lines. For TEM structures, the conductor
voltages and currents can be calculated in an unambigu-
ous way by line-integrals of the electric and magnetic
fields. For non-TEM structures however. there is no such
unique definition of conductor voltage and current. Only
in the quasi-static limit (quasi-TEM), both circuit param-
eters, voltage and current, have a unique and clear circuit
interpretation. We use the well-accepted Pl-formulation
to model the structure under study. The circuit current
I,z (=1, -+ ,N)ischosen to be identical to the total
longitudinal current flowing along conductor i{. This
choice is the same as in the quasi-static case. Further-
more, both the circuit model representation and the real
waveguide structure should have the same complex. prop-
agation modal factors vy, and should propagate the same
average complex power.
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The discussion proceeds in three steps: first the circuit
current is defined followed in a second step.by the circuit
voltage. The arbitrariness introduced in the first two steps
is removed by the introduction of the conservation of
power principle in a third step. As discussed in {18]-[19],

.the PI-model has the most TEM-like character for mi-
crostrips, striplines and related structures. Note however
that the present study is not restricted to the PI-model!
The discussion given in the sequel proceeds in a com-

pletely analogous way for the PV- formulatlon as ex-

plained in Appendlx B.

A. Circuit Current

As stated above, the circuit current I, (z) 0 =1, - - -,
N) is defined as the total longitudinal current flowing
along conductor i:

L) = @,H(x, v, 9 - dl = <§ L@ "HY &, y) - dl

3

withi =1, » N. The current is a clear physical quan-
tity that consists of contributions of the N propagating
modes. The integration extends over the boundaries of the
cross-section of conductor i (see Fig. 2). In the quasi-

static limit the current is uniquely defined and the inte-

gration-path can be chosen arbitrary around the conduc-
tor, because the displacement current is zero.

-Equation (5) can be written in a compact matrix-form
as ’

1@ = Mi1,@) (62)

where I, (= [I,(2)ljy x 17) 1s the circuit current vector and

My = vxa Ip = @i HY - dI; (6b)
M; is the frequency dependent transformation matrix be-
tween modal currents and circuit currents.,

Remark that HY can be multiplied with an arbitrary
complex factor 6, if I, is divided by the same factor. Con-
sequently, the modal circuit transformation matrix Mj is
NOT uniquely defined. On the other hand, the ratios ,, /I,
G,j,p=1, , N) are determined in an unambiguous
way. - :

B. Clrcult Voltage

The circuit voltage vector V, (— Ve @l x 1) is still
unknown. Now we will look for a practical representation
suited for further matrix calculations. Later on, we will
use the power-current (PI-) formulation to define the un-
known parameters.

The clectromagnetic fielde can always be expressed as
a linear combination of the propagating modal fields,
hence, we can represent the circuit voltage vector V,

~as a superposition of the modal voltages V,,(p = 1,
, N): '

V(@) = M,V,() G
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Fig. 2. Integration path around conductor i.

where M, (= [v,]lwxny) is the frequency dependent
transformation matrix between modal voltages and circuit
voltages. -

With -the help of (4) and (7), the voltage components
propagating in the positive z-direction can be written as

Vi@ =MV =Me V0
= M,Z,I} @) = MyI; @ ®
where M » (= Wplwxm = [v,Z,,)) is the ffequency de-

pendent transformation matrix between modal currents
and circuit voltages. The ratios V,, /I, G, j, p = 1,
, N) are uniquely determined. For the negative

- z-direction, M, must be replaced by —M . In the sequel

we will restrict ourselves to results for the +z-direction.
In that case I (z) (6) and V (z) (8) are formed by the
sum of individual contributions of the form
I,1; 0)e " and V, I, (0)e ~"* respectlvely They can
be seen as the contribution of the p™ mode to the 01rcu1t
current and the circuit voltage propagating along the i
conductor in the positive (longitudinal) z-direction. Only
the first circuit factor has a real physical current meaning.
The second one is defined via power and current (PI).

C. Power Conservatzon ~

We will now assign a value to the arbitrary matrices M,
and M, by looking at the propagated power. The circuit
model and the coupled waveguide structure under study
should propagate the same complex power. The average
complex power propagated by the coupled hybrid wave-
guide structure can be found by integrating Poynting’s
vector over the cross-section S of the structure:

tot
P,

]

AACH SS (¥, 3) x HY'(x, 9)*7]
; ‘
+ dS I,(2)*
V,@ P, (% 9
whére ds = iz ds = Tz dx dy, ahd

)

PP = [pEH)
Pri =13 SS [EM<x » % Hijx, y)*] - dS  (10)
. N .

withp,g =1, -+, N.
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The average complex power propagating in the positive
z-direction is

PY= Vi (0) e TP e TS (0)

=1; @ P, @) an
where
PH = [ng][NxN] = ZvPEH
Pl = pEZ, 12)

On the other hand, the average complex power propa-
gated by the coupled transmission line model is given by

P =3 V@ L@* =5 V@ 'MIM{L,* (13)
and the power propagating in the positive z-direction is
Pt = v L @ =51 @ "M MFT; ()%
(14)

From the right-hand side of (14) it follows the P®™" is

constituted by elementary contributions of the form
I} (e 7 PEie~vit[} (0)* due to the electric field of
mode p and the magnetic field of mode g(p, ¢ = 1,
- e N

The average complex power propagated by the coupled
hybrid waveguide structure and by the circuit model must
be identical, hence P'" = P = P}". This requires that

s MIM}F = PEH . (15a)

or that
M Mf =P (15b)

The equivalence of propagating power (15) defines the
unknown matrices M, and M,

IV. CoupLEp TraNsMisSION LINE MoDEL

In this part our final transmission line model is intro-
duced (Section IV-A). The generalized line parameter
matrices R(w), G(w), L(w) and C(w) are defined. In Sec-
tion IV-B it is shown how these matrices can be directly
derived from the modal fields. Subsequent Sections (IV-D
to IV-F) discuss the properties of our circuit model which
can be seen as an extension of the more familiar quasi-
TEM approximation. To this end so-called standard trans-
formation matrices are introduced in Section IV-C. Fi-
nally the well-known quasi-static lossless ‘‘Chang’’-cir-
cuit model [20] is extended to cover coupled lossy
dispersive structures (Section IV-G).

A. Generalized Telegrapher’s Equations

The generalized telegrapher’s equations can be found
by substitution of the circuit currents (6) and the circuit
voltages (7) into the modal transmission line equations
3):

d
% Ve@ = M,TZ,M;'1.(2) = Z, 1. (2) (16a)
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_—dé c(z) = MIFZ;Iszch(Z) = Ycch(z) (16b)

Combining these two equations leads to the wave equa-

tions for the circuit currents and voltages:
d? 2301 2

? V(@ = MvF M, V. () = AV (D) (17a)

d’ 2 g1 2 2T

EIC(Z) = MIF M; Ic(z) = AIIc(Z) = Au Ic(z)

(17b)

These (frequency dependent!) equations are very similar
to the well-known static transmission line equations [1],
[5]. Note however that no static extrapolations or as-
sumptions were made.

The matrices A,(w) = M,IM,! and A;(w) =
M;TM ;" represent the complex voltage and current prop-
agation matrix respectively. These matrices are uniquely
defined. Note however that they are not symmetric.

B. Generalized Transmission Line Parameters

The matrices Z (w) and Y, (w) are uniquely defined
and they represent the circuit impedance and the admit-
tance line matrices per unit length. Generally spoken,
these matrices are frequency dependent, and we can split
them in a real and an imaginary part:

Zi(w) = R(w) + jol(w) (18a)
Y (0) = G(w) + jol(w) (18b)

where R(w), G(w), L{w) and C(w) are the generalized re-
sistance, capacitance, conductance and inductance [N X
N]-matrices. The coupled transmission line model is
completely characterized by N(N + 1) complex frequency
dependent line parameter.

The new circuit model is fully compatible with, and is
an extension towards higher frequencies of the well-
known TEM and quasi-TEM circuit models [1]. Some
typical static concepts, such as capacitance and induct-
ance, are generalized and introduced in the high-fre-
quency model. Note that at each discrete frequency the
model can be seen as a quasi-static model. The resem-
blance with the quasi-static model is the main reason why
the proposed frequency dependent model is perfectly
suited for CAD calculations.

The line parameter matrices R(w), G(w), L(w) and C(w),
and also Z . (w) and Y, (w), are symmetric because the
coupled waveguide structures are reciprocal (at least in
the absence of anisotropic media). Taking relation (16)
into account, the symmetry of Z_, and Y leads to the
following important reciprocity relation:

MIM, = diag (b2) (19)

The diagonal matrix diag (bg )iv x v depends on power
and current. Combining (15b) and (19) leads to

2P'EH = diag (b2)M; ' M}

il

Ay (W) Z(w)
Ap(w) Y, (o)

(20)
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In the lossless case the transformation matrix M; can
always be chosen to be real. In that case (20) reduces to

2P = diag (b2) 1)

The power matrix P'E# is diagonal in the lossless case,
which means that the different propagating modes do not
interchange any power: the modes are power-orthogonal.
This can also be shown starting from Lorentz reciprocity
relation. The diagonal elements of P'*¥ give an indica-
tion of the average propagated power by the different
modes.

It is very important to emphase that only in the lossless
case the reciprocity relation (19) is included in the power
relation (15)! This means that the reciprocity property is
not included in the circuit model for lossy waveguide
structures proposed in [16].

C. Standard Transformation Matrices

As mentioned earlier, the transformation matrices M;

and M, are not uniquely defined. If the partial modal field
ﬁﬁ‘: is multiplied with a arbitrary complex factor §,, the
factors I, and V, are also multiplied with the same factor.
Based on the re01pr001ty relation (19), we introduce two
new standard transformation matrices:

M = M, diag (b, ") (22a)

M = M diag (b, ) (22b)
(19) then leads to the useful relation:

[Mgtandard]T — [M.:tandard]—l. (23)

D. Characteristic Impedance Matrix

The frequency dependent characteristic impedance ma-
trix Z,(w) is defined as

Zc = Azjlzcir — M,’,Ml_l — M:}tzmdard[M;tandard]—l (24)

This [N X N]-matrix can be seen as the input impedance
matrix of an infinitely long coupled transmission line

structure. The characteristic impedance matrix relates the -

current waves to the voltage waves traveling in positive
longitudinal dlrectlon

Vi =21

Combining (15) and (24) leads to a familiar-looking power
relation:

25)

P = i MIZM] = ; M) M} (26)
In the lossless case M; can always be chosen to be real.
As M, is real, (23) and (24) establish that the matrix Z, is
real, symmetric and has positive diagonal elements. Fur-
thermore, having the form ATA, with A a real [N X N1-
matrix, the characteristic impedance matrix is also posi-
tive definite [1].

The characteristic admittance matrix Y, (w) is defined
in an analogous way:

Y, = A7'Yy = MM}, = Z]" Q7
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This matrix is also symmetric. Both the characteristic
impedance and admittance matrix do not depend upon the
longitudinal space coordinate z and they are defined in an
unambiguous way.

In the quasi-static limit, the new high-frequency char-
acteristic impedance definition corresponds with the well-
known (static) characteristic impedance matrix [1], [5]. It
is much more suited for circuit simulation, and CAD ap-
plications than the traditionally used line-mode imped-
ances [11]-[16]. The line-mode characteristic impedance
Z;, of a conductor i for an eigenmode p is defined as the
ratio of the circuit voltage Vj, to the circuit current I;,
propagating in the z-direction along transmission line z,
for mode p, thus:

7, -2 _ Y
T

The relation between the characteristic impedance matrix
Z;(w) and the line-mode characteristic impedance Z, is
clearly expressed by (24):

1)[1,

28

plvxny = 2y Iplivxw-

29
In the lossless case, the line-mode characteristic imped-

ance Z;, can be negative, as was shown theoretically along
with some numerical examples in [15].

V4 c.,]rNxm Ujp][NxN] = [V

E. Wave Representation )
The circuit voltage and current vectors are the sum of
wave components propagating in negative and positive z-
direction:
L) = My(e ™15 (0) — e "1, (0)

(3'0a)

= e ML) — eI (0)
and
V@ = My(e 170 + eI (0)
= Z,(e MI}(0) + e™*I]7(0) (30b)

where the unknown line vectors are determined by the
boundary conditions.

F. FEigenvectors

Based on the generalized telegrapher’s equations (16),
it can be seen that the columns of the transformation mat-
rices M, and M, respect'lvgllg)ggst of the eigenvectors

of the complex propagation matrix A, (w) and A;(w). The
eigenvalue equations are found to be:

(Zcir Ycir) Vlc701 = 7121 Vlczol (3 1)

and
I IéoTl (Zcir Ycir) = I col (32)

V%, and IZ are the right-hand and left-hand eigenvectors
of A,, associated with the same eigenvalue v,.

Both sets of eigenvectors Vo, and I, (p = 1, - - -,
N) span the complete N-dimensional space. Hence any
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Fig. 3. Equivalent circuit model.

arbitrary voltage or current distribution can be repre-
sented as a weighted sum of these eigenvectors (see for
example (6) and (7)).

The reciprocity relation (19) shows that the eigenvec-
tors V2 and I, are orthogonal, i.e. Vel - 19, = 0 forp
# g. This can also be proven by combining (31) and (32)
in a proper way [1]. The standard eigencurrent and eigen-
voltage vectors (22) are always orthonormal.

G. High-frequency Circuit Model for Coupled Lossy
Dispersive Waveguides

In this part, we will generalize the quasi-static circuit
representation for lossless transmission lines proposed by
Chang [20], and construct a high-frequency circuit model
for coupled lossy dispersive waveguides.

The transformation matrices M; (6) and M, (7) relate
respectively the circuit to the modal currents (I, and I,,)
and the circuit to the modal voltages (V, and V,). We use
these transformation matrices to decouple the transmis-
sion lines. In that way, the propagation of the N funda-
mental modes is represented by N single decoupled lines.
The characteristic impedance of these lines depends upon
the choice of the transformation matrices My and M,,. If
we use the standard transformation matrices defined
above, the characteristic impedance of the uncoupled lines
is1Q.

The equivalent (frequency domain) circuit representa-
tion of the general waveguide structure is shown in Fig.
3. Note that the multiplications in the frequency domain
correspond with convolutions in the time domain! The
general waveguide structure with N fundamental propa-
gating modes, is completely characterized by N(N + 1)
complex frequency dependent parameters. These param-
eters can be the N line-mode characteristic impedances
Z;, (28) and the N modal propagation factors vy, (3) which
follow directly from the full-wave analysis. The N(N +
1) /2 relevant parameters of the symmetric circuit imped-
ance matrix Z, (18a) and the circuit admittance matrix
Y, (18b) are more suited for CAD-applications.

A lossless hybrid waveguide structure consisting of two
signal conductors and one reference conductor (N = 2)
for example is completely characterized by 3 frequency
dependent generalized inductance (L,;, Ly, L,, = Ly; =
L) and 3 generalized capacitance (Cy;, Cp, C,, = Cy
= C;;) parameters. Remark the analogy with the (fre-
quency independent) quasi-TEM description.

V. PowgRr DISTRIBUTION OVER THE DIFFERENT LINES
In this section a detailed study is presented of the con-
tribution of each mode to the power propagated by each
line. The problem is complicated by the fact that the
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modes are no longer power orthogonal as is the case for
lossless structures.

In (1), the global electromagnetic fields were repre-
sented as a sum of partial modal fields. This led to the
power distribution over the different modes (P¥). Now
we will examine the power distribution over the different
lines. Using (6) and (7), the global electromagnetic fields
can be expressed as a function of circuit-related parame-
ters:

Ex, y,2) = V. E{(x,y) + R (D Ej(x, y)
(33a)

_ — 1 —
Hix, y,2) = L@ Hi{(x, y) + 7 V.@ Hj(x, y)
0

(33b)
where
Eir,y) = MI'E¥(x, y) Ef(x,y) = M7 'EM(x, y)

Hix,y) = M] 'HY(x,y) Hix,y) = M) 'HY(x, y).
(34)

With each conductor corresponds an unique transversal
and longitudinal normalized electric and magnetic field.
Equation (34) shows that these normalized fields can be
seen as a weighted average of the different propagating
modal fields. In what follows, we only consider the waves
propagating in positive z-direction.

Based on (14) and (33), we can prove that the partial
transversal electromagnetic fields Ef, (x, y) and ﬁg x, y),
associated with the conductors i and j, are power-ortho-
normal, i.e.:

SS [ES(x, y) x Hi(x, y)*'] - dS = 1% (35)
S

The circuit-related electromagnetic fields (34) are always
power-orthonormal. On the other hand, the mode-related
electromagnetic fields (2) are only power-orthogonal in
the lossless case.

The current flowing along conductor i (5) can be ex-
pressed as a function of the transversal partial magnetic
field:

IC:(Z) = @ lc(z)Tﬁf(xa y) - dz (36)
where the integration extends over the boundary of the
cross-section of conductor i (see Fig. 2). This leads to:

§>i Hi(x,y) - dl =& 37
where §;; is the Kronecker delta. Note that the total elec-
tric and magnetic fields consist of longitudinal and trans-
versal components, thus 1, X Hf # 0.

The normalized field Hy (x, y) is a weighted average of
the propagating modal transversal magnetic fields (34).
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This field is responsible for a current of 1 A along con-
ductor i, and for a current of 0 A along the other lines in
the circuit model (37). The current of O A should be in-
terpreted in the average sense, this means that some lon-
gitudinal currents may flow along conductor j (# i), but
the net longitudinal current (= weighted sum of different
modal currents) is identically zero.

Taking into account the power-orthogonality relation
(35), we see that Eg(x, y) is responsible for a voltage of
1 V on conductor i and a voltage of 0 V on the other
conductors of the circuit model.

We can conclude that the circuit-related fields are nor-
malized in the average sense defined above.

Now we will split the electromagnetic fields associated
with a conductor in smaller parts, each part associated
with a different mode. We only consider the transversal
fields. The calculations of the longitudinal fields proceeds
in an analogous way. We define:

EM @, y) = E5 8 (x, )M, (382)
M (x, y) = HE%5(x, ) M, (380)
where o
E{-%*¢(x, y) = diag [E¢(x, Miv x Ny
and

He %2 (x, y) = diag [HE (x, Wy x -

EM (x, y) (H ™" (x, ) is the transversal electric (mag-

netic) field associated with the pth mode and the ith con-
ductor. From (37) and (38) we learn that

8;1, = <§> HM (x,y) - d (39)
where [, is defined in (6).

Substituting (38) in (35) leads to a new power distri-
bution relation:

E\§ Eee B a5 = Yoy = 0, pg
S

(40)

where 1) (0)e “WEPCITT e TYax[ ¥ (0)* is the average com-
plex power propagating in positive z-direction along con-
ductor i and associated with the magnetic field of mode ¢
and the electric field of mode p.

Based on the power orthonormality relation of the par-
tial fields E¢(x, y) and Hg (x, y) (38) and from (34), the

partial power factor P,-CI,Z’ *(40) can be expressed as

o = || @y < 2 - as
N

[

N

@n

N} —

x HM") - 5.
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In the lossless case and if p = ¢, this formula is similar
to the approximate partial power expression proposed by
Jansen [11] for coupled hybrid waveguides. Jansen’s for-
mulation was inspired by the (correct) power distribution
for TEM-waveguides [12] and is only exact in the quasi-
static limit. The partial magnetic field associated with
conductor i and mode p used by Jansen ensures that NO
longitudinal current will flow along conductor j (# i). On
the other hand, the partial magnetic field ﬁfl’;M ** (38) used
in this paper only ensures that the WEIGHTED SUM of
the modal longitudinal currents flowing along conductor j
(# i) is equal to zero (39). Hence, some modal longitu-
dinal current-movement is allowed.

The definition of Jansen can only be used in the quasi-
TEM limit, when the longitudinal electromagnetic fields
are negligibly small. Our definition is appropriate above
the quasi-TEM limit.

Based on (10), we write

N

Po = L Pyt =3 2 “2)

where Pff is proportional to the average complex power

propagating in positive z-direction and associated with the

magnetic field of mode ¢ and the electric field of mode p
(withp,g=1,---,N).

The total average power propagating in the positive z-

direction (14) is given by
N N N
prtt — Zl Zl Z I:,;(Z)PCVHI;;(z)*
q p

i1 pq

M=

N
2 2 1L @P o 43)
In the lossless case, the power orthonormality of the ei-
genmodes ensures that P; = 0 if p # ¢. The average
complex power associated with the electromagnetic fields
of the pth mode and propagating in positive z-direction
along the ith conductor of the lossless transmission line
structure is given by |1 (2)|* P with PO = PO =
1 VipI%.

If the structure is lossless and if N = 2, it can be shown
that (40) and (44) are equivalent to

Cvi+ CvI+ M cM
Pui” _ Py P Pp

CViI+ = pCVi+ — pCM — pCM 45)
Pt Pin Py Py
and
CVI+ CVI+
Pio™ _ Ppi _ 1 6
p CVI+ = pCVI+ — T (46)
212 121 .

Note that no static assumptions or extrapolations were
made in the power-analysis derived above. The power
distribution over the different modes and different lines is
calculated in a rigorous and concise way.

VI. NuMERICAL ExaMPLE
In this section, we construct an equivalent high-fre-
quency transmission line model for a coupled two-line
system laying in an inhomogeneous lossy medium. The
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Fig. 4. Cross-section of a lossy coupled strip configuration.
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Fig. 5. Relevant elements of (a) resistance, (b) inductance, (c) conduc-
tance, and (d) capacitance matrix as a function of frequency.

cross-section of the strip configuration is shown in Fig.
4. The structure consists of a perfectly conducting ground
plane, a lossy dielectric substrate (1g 6 = 0.05, ¢, = 9.8),
and a half-infinite air top-layer. The strips are infinitely
thin and perfectly conducting. The width of both strips is
1 mm.

Two fundamental modes can propagate in this two-line
system: an even mode and an odd mode. Using a rigorous
full-wave integral equation technique [21], the modal
propagation factors and the line-mode characteristic
impedances are calculated in the frequency range 0-100
GHz. All losses are calculated in an exact way without
making any approximations or perturbations. In Fig. §,
the elements of the symmetric resistance, inductance,
conductance and capacitance matrices are shown as a
function of frequency. Note the significant frequency
dependence of all these parameters.

As expected, the resistive losses are relatively low, and
the conductance factor Gy is rather high due to the con-
ductance of the dielectric layer (g 6 = 0.05). The ¢lec-
tromagnetic fields concentrate more and more in the lossy
dielectric layer as the frequency increases. Hence, L, in-
creases and C); decreases with frequency. The frequency
dependent elements of the characteristic impedance ma-
trix Z,(w) are shown in Fig. 6.

Finally, the equivalent transmission line model of the
two-line structure under study is shown in Fig. 7. The
propagation of the fundamental modes is represented by
two single transmission lines. Both decoupled lines have
a characteristic impedance of 1 ©. This high-frequency
circuit model together with other linear and/or nonlinear
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Fig. 7. Equivalent circuit representation of the coupled structure of Fig.
4.

device models can be used for time-domain simulation
[17] and for CAD applications.

VII. CoONCLUSION

Starting from Maxwell’s equations, an accurate cou-
pled transmission line model has been proposed for the
fundamental modes of a uniform coupled dispersive lossy
waveguide structure. The frequency dependent circuit
model is well suited for CAD applications and for imple-

‘mentation in circuit simulators. The matrix formalinm has

been used throughout this paper, which guarantees a very
clear, compact and general description.

Based on the well-accepted power-current (PI-) for-
mulation for stripline or microstrip like structures or on
the power-voltage (PV-) formulation for coplanar struc-
tures, the transformation between modal parameters and
circuit parameters has been defined in an unambiguous
way. The generalized telegrapher’s equations have been
derived directly from Maxwell’s equations. This was also
the case for the frequency dependent line parameter mat-
rices R(w), G(w), L(w) and C(w), the complex propagat-
ing factor A, (w) and the symmetric characteristic imped-
ance matrix Z.(w). This new characteristic impedance
definition is much more suited for circuit simulation pur-
poses than the traditional line-mode impedances. The ma-
jor advantage of this high-frequency model is its simple
circuit-interpretation and its compatibility with the well-
known quasi-static circuit models. Furthermore, the elec-
tromagnetic fields associated ‘with each mode and each
conductor have been defined. The fields associated with
the conductors are always power-orthonormal. The power
distribution over the different modes and different lines
has been calculated in a rigorous and concise way.
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APPENDIX A
GENERALIZED TRANSMISSION LINE EQUATIONS

In [9], relations are derived between the modal current
and the modal voltage, and between the transversal and
the longitudinal field components of a single transmission
line. In this Appendix we derive analogous relations for

the N fundamental modes of a coupled waveguide struc- -

ture.

Our starting point is the total electromagnetic field as
given by (la) and (1b). We substitute these representa-
tions in Maxwell’s equations, and separate the longitudi-
nal and the transverse components. This leads to the modal
transmission line equations (3a) and (3b), but also to the
following vector-relations between the longitudinal and
the transversal partial electromagnetic fields:

B Y) =
R

VXEM(x,y) +jo——=H(x,y =0
: 0

(Ala)
I‘szz X Ei‘”(’xa y) - ROV X E;‘l(x, )’)
— jop G, WHY(x, ) =0 (A1b)
V x HY(x, y) — joe(x, WREN(x, y) = 0
‘ (A2a)
17 . —M vV X ﬁf”(x, y)
I1Zv lz X Ht (x, )’) -
Ry
+ joe(x, NE (x,y) = 0 (A2b) .
Ve, WEN(x, y) — Roe(x, WIZ;'1,
-EN(x,y) =0 (A3)
Voutn nEY e y) ~ P D1z T,
Ry
“H)'(x,y) = 0. (A4)

The results in [9] can be seen as a special case (N = 1)
of the general equations (A1l)-(A4). Elimination .of the
longitudinal partial fields in (A1)-(A4) leads to two ei-
genvalue equations with the modal propagation factor ma-
trix I' (= diag (y,)wxn)) as eigenvalue and with the
modal transversal fields as eigenvectors. The electric ei-
_ genvalue equation is found to be

T2 + w’puel EY (x, y) :
| 1 _
= uV X [—V x EY(x, y)} -V [—V - eEY(x, y)]
u €
(AS)
and the magnetic eigenvalue equation is
T2 + w?uel HY (x, 3)
. : B 1 .
=€V X [1v x HM(x, y)} -V [—V - pHY(x, y)]
€ 2

(A6)

withi =1,

T--as:

"~ where M, (= [V,

1553

Fig. 8. Integration path relevant to the PV-formulation.

APPENDIX B
PV-FORMULATION

Both the circuit model and the real waveguide structure
must have the same complex modal propagation factors
7, and must propagate the same average complex power.

" However, these two fundamental conditions do not define

all circuit parameters in an unique way. The remaining’

-degree of freedom in the modeling process can be used to

obtain a quasi- -static equivalence.

For slotlines and coplanar interconnection structures,
the power-voltage (PV-) model has the most TEM-like
character [22] and is best suited for circuit simulation.
The voltage is a physical quantity which is conserved
when the structure is connected to lumped elements. The
circuit voltage V,,.(i = 1,.- , N) is defined as a line in-
tegral of the electric field: o

Vci = S F(X, y, Z) -. dz =S VU(Z)TE?J(-X’ }’) - dl
Li

(B1)

'+, N. The voltage is a clear physical quan-
tity that consists of contributions of the N propagating
modes. The integration extends over a well-defined path
(see Fig. 8). In the quasi-static limit the voltage is
uniguely defined and the integration-path can be chosen
arbitrary. .
Equation (B1) can be written in a compact matrix-form

‘ Vc(z) =MV, (B2)

i»livxny) 18 the frequency dependent
transformation matrix between modal voltages and circuit
voltages. The ratios V,,/V), (i, j, p = 1, , N) are
defined in an unambiguous way.

We represent the circuit current vector I, as a super-
position of the modal currents /,, (p = 1, - -+ , N):

I.(z) = M1, (2)

where M; (= [i;, lin x v1) is the frequency dependent trans-
formation matrix between modal currents and circuit cur-

(B3)

© rents.

The current components propagatlng in the positive z-

direction can be written as:

IF@ = MIE Q) = MZ; Vi@ = MiViQ@ (B4
where M| (= [, livxn = lip/Z,,)) is the frequency de-

-pendent transformation matrix betwen modal voltages and



1554 . IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 40, NO. 7, JULY 1992

circuit currents. The ratios I,,/V,, (i, j,p =1, - -+ , N)

are uniquely defined.

Once the transformation matrices are defined, the anal-
ysis proceeds in exactly the same way as described for the
PI-model.
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